Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E466-E471, 2013.
Article in Chinese | WPRIM | ID: wpr-804288

ABSTRACT

Objective To test and evaluate the effect of neck muscular strength training for military pilots at different time durations based on a self-developed pilot neck muscle training device. Methods The neck muscular strength training device, CME-1, was used to train the military pilots and military smithery members for 2, 3 and 6 weeks, respectively. The isometric and changeable velocity and resistant (CVR) modes were performed and the neck muscular strength at those different time durations was measured to evaluate the training effect. Results For all 60 military pilots trained at different time durations, the average neck muscular strength and the mean value of peak impulse in 10 seconds in anteflexion, retroflexion, right/left lateroflexion were significantly improved after training (P0.05). For 11 military smithery members after 6 weeks’ training, both the average muscular strength and the mean value of peak impulse in 10 seconds in all directions were significantly enhanced (P<0.001), with the average muscular strength increased by 71.1%, 83.7%, 78.6% and 75.2% respectively, while the mean value of peak impulse in 10 seconds was increased by 136.9%, 138.5%, 114.1% and 114.4%, respectively. Conclusions This study provides the physiological basis for establishing the military standards of neck muscular strength training for different fighter pilots, the proper method for training those pilots with low neck muscular strength, as well as the reference of neck muscular training duration and strength target for high performance aircrafts and carrier aircrafts.

2.
Journal of Medical Biomechanics ; (6): E034-E038, 2011.
Article in Chinese | WPRIM | ID: wpr-804107

ABSTRACT

Objective To evaluate neck muscular strength(NMS) of the air force pilots and its role in the circumstance of aerial dynamics. Method The tests were performed by using CME-1 Neck Muscle Training Machine with 149 pilots volunteered as test subjects. Each individual’s maximal isometric NMS was evaluated in the extension, flexion, left and right lateral bending directions within a single day. The NMS in each direction was tested for 10 times to choose the maximal peak value in each direction as the NMS for data analysis. The mean of overall peak value in each direction was calculated as the mean neck muscular strength (MNMS). The ratio(r) between MNMS and NMS was calculated to reflect the neck muscular endurance in pilots. Results The NMS in the flexion, extension, and left and right lateral bending directions was (132.0±42.2)N, (205.2±82.2)N, (174.3±76.4)N and (191.2±78.3)N respectively,the NMS in the extension or flexion direction was significantly different (P<0.001) compared with NMS in all the other directions,and the right NMS was significantly higher than the left NMS(P<0.001). The ratios between MNMS and NMS in the flexion, extension and left and right lateral bending directions were 74.24%,72.86%,72.75% and 68.72% respectively. Conclusions To Maximize the efficiency in flight performance and minimize neck injuries induced by +Gz, fighter pilots should be encouraged to perform more on land neck muscle strengthening exercises and improve their head positioning techniques during flight.

3.
Journal of Medical Biomechanics ; (6): E253-E256, 2010.
Article in Chinese | WPRIM | ID: wpr-803624

ABSTRACT

Objective To carry out quantitative investigation on application of emulational trunk dummy (ETD) in evaluating the opening shock of life saving parachute and provide a more reliable test method for further development. Method ETD equipped with parachute was tested in the impact experiment, where a 63.4 kg impact block was dropped from the height of 0.20 m,0.40 m,0.60 m,0.80 m respectively to simulate different opening shocks. The opening shocks were deducted by measured forces on harness and acceleration loads at the center of dummy's thorax. For comparison, 5 rigid trunk dummies (RTD) were tested under the equivalent impacts. As the contrast test, 24 male healthy subjects were also exposed under such impacts with standing and sitting posture respectively. Results Under the same impact, the peak impact value on harness exhibited maximum on RTD, minimum on subjects with sitting posture, and medium on ETD. There were significant differences between each experimental group (P<0.01). With different impact loads, the peak impact value on ETD was 2 795,3 873,4 816 and 5 736 N respectively, which was correspondingly close to that of subjects with standing posture(2 541,3 042,3 720 and 4250 N). Conclusions The result of opening shock gathered from ETD is closer to that from RTD due to ETD’s viscoelasticity, which shall certainly influence the measured opening shock. Therefore, ETD is suggested to be used in the development of live saving parachute.

4.
Chinese Journal of Medical Instrumentation ; (6): 206-221, 2007.
Article in Chinese | WPRIM | ID: wpr-323284

ABSTRACT

This paper introduces the background, definition and duties of the clinical engineering technicians in Japan and their education and examination systems.


Subject(s)
Biomedical Engineering , Education , Reference Standards , Japan , Licensure , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL